If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-11x=180
We move all terms to the left:
2x^2-11x-(180)=0
a = 2; b = -11; c = -180;
Δ = b2-4ac
Δ = -112-4·2·(-180)
Δ = 1561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{1561}}{2*2}=\frac{11-\sqrt{1561}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{1561}}{2*2}=\frac{11+\sqrt{1561}}{4} $
| 4v-28=-6v-10 | | 2/(5x)-1=-9 | | (5x-2)^2=6 | | 4(2x+3)=-3(×-1)+3 | | -8-5x=1 | | 9-4x=10x | | 2(6x+5)=3(6+5x) | | x•5x=21875 | | 3=w4 | | 14.3=c+5 | | 1/3x+21=4x | | -2x+28=-x | | 6x-2=6x+1 | | 8x²-44x+60=0 | | 13x-7=21 | | 5x-8x=10 | | 3p²-3p-9=0 | | t=2.5t+17 | | 7x+2=-7+4x+24 | | 7a/9=21 | | 34x=10 | | 5^x=1/144 | | 7-3(2-1)=2x+26= | | (7x-12)°+(4x-17)°=180° | | 12x-(5x+3)+15=4x | | a+8/5=-26 | | 11x-(3x+7)+15=4x | | 10k-15=21k-5 | | -14+28k=-10 | | 6x-2=5+3 | | 8x-(4x+7)+15=2x | | 16p2-40p+25=0 |